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Abstract 
 

Creutzfeldt–Jakob disease (CJD) is a rare, 

incurable, and always fatal neurodegenerative disease.  

It belongs to a class of human and animal diseases 

known as prion diseases. A prion is a misfolded protein 

which induces misfolding in normal variants of the 

same protein, leading to cellular death. Prions are also 

linked to other neurodegenerative diseases like 

Alzheimer’s disease, Parkinson’s disease, and 

amyotrophic lateral sclerosis, which are sometimes 

referred to as prion-like diseases. In this introductory 

article, after a brief foray into their history, prions will 

be presented in terms of their nature, structure, normal 

functions, propagation, degradation, replication and 

implications for drug design as well as their links to and 

roles in other neurodegenerative diseases. Bypassing 

the traditional flow of genetic information within a 

biological system, primarily from DNA to RNA to 

protein, prions have forced a reconsideration of the 

central dogma of biology – a topic addressed in a 

sidebar. 

 

 

 

AD: Alzheimer’s disease; ALS: Amyotrophic lateral 

sclerosis; BSE: Bovine spongiform encephalopathy; 

CD: Crohn’s disease; CJD: Creutzfeldt-Jakob disease 

[including aCJD: acquired; iCJD: iatrophic; fCJD: 

familial; sCJD: sporadic]; CNS: Central nervous 

system;; CWD: Chronic wasting syndrome; FTLD-U: 

Frontotemporal degeneration with ubiquitin-positive 

inclusions; GSSS: Gerstmann-Straussler-Scheinker 

syndrome; HD: Huntington’s disease; HNR: 

Heterogeneous nuclear riboproteins; HEN: Homing 

endonuclease; MCD: Mad cow disease; MM: 

Methionine/methionine; MSA: Multiple system 

atrophy; MV: Methionine/valine; PD: Parkinson’s 

disease; PrLD: Prion-like domain; PrP: Prion protein; 

RA: Rheumatoid arthritis; TAR: Transactive response; 

TDP: Transactive response DNA-binding protein; TSE: 
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Creutzfeldt–Jakob disease (CJD) is a rare, incurable, 

and always fatal neurodegenerative disease.  It belongs 

to a class of human and animal diseases known as prion 

diseases. It received public attention in the 1990s when 

some people in the United Kingdom became sick with a 

form of the disease called variant or CJD (vCJD) after 

eating meat from diseased cattle. However, most CJD 

cases have not been linked to such a cause. There are 

three 3 other forms of the disease: sporadic (sCJD), 

acquired (aCJD), and genetic or familial (g/fCJD). 

 

All types of CJD are serious but are very rare - about 1 

to 2 cases are diagnosed per million people around the 

world each year. The disease most often affects older 

adults. About 85% of cases of CJD occur for unknown 

reasons, while about 7.5% of cases are inherited in an 

autosomal dominant matter. However, vCJD affects 

people at a younger age and appears to last 12 to 14 

months. Exposure to brain or spinal tissue from an 

infected person may also result in its spread. There is no 

evidence that sCJD can spread among people via 

normal contact or blood transfusions, although this is 

possible in vCJD. 

 

CJD is caused by prions. Infectious prions are 

misfolded proteins that occur in the neurons of the 

central nervous system (CNS) and can cause normally 

folded proteins to also become misfolded. The CJD 

prion is dangerous because it promotes refolding of the 

cellular prion protein into the diseased state. The 

number of misfolded protein molecules will increase 

exponentially, and the process leads to a large quantity 

of insoluble protein in affected cells. This mass of 

misfolded proteins disrupts neuronal cell function and 

causes cell death. Once the prion is transmitted, the 

defective proteins invade the brain and induce other 

prion protein molecules to misfold in a self-sustaining 

feedback loop. These neurodegenerative diseases are 

commonly called prion diseases. 

 

To understand CJD, it will be helpful to first learn more 

about prions, the subject of this introductory article. 

 

 

 

In the 18th and 19th centuries: Exportation of sheep 

from Spain was observed to coincide with a disease 

called scrapie. This disease caused the affected animals 

to "lie down, bite at their feet and legs, rub their backs 

against posts, fail to thrive, stop feeding, and finally 

become lame". The disease was also observed to have 

the long incubation period that is a key characteristic of 

transmissible spongiform encephalopathy (TSE). 

Although the cause of scrapie was not known back then, 

it is probably the first TSE to be recorded.  

 

In 1922: Walter Spielmeyer introduced CJD after the 

German neurologists Hans Gerhard Creutzfeldt and 

Alfons Maria Jakob. 

 

In the 1950s: Carleton Gajdusek began research which 

eventually showed that kuru could be transmitted to 

chimpanzees by what was possibly a new infectious 

agent, work for which he eventually won the 1976 

Nobel Prize. 

 

During the 1960s: Two London-based researchers, 

radiation biologist Tikvah Alper and biophysicist John 

Stanley Griffith, developed the hypothesis that TSEs are 

caused by an infectious agent consisting solely of 
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proteins. 

 

Earlier investigations by E.J. Field into scrapie and kuru 

had found evidence for the transfer of pathologically 

inert polysaccharides that only become infectious post-

transfer, in the new host. Alper and Griffith wanted to 

account for the discovery that the mysterious infectious 

agent causing the diseases scrapie and CJD resisted 

ionizing radiation. 

 

Francis Crick recognized the potential significance of 

the Griffith protein-only hypothesis for scrapie 

propagation in the second edition of his “Central dogma 

of molecular biology” (1979). While asserting that the 

flow of sequence information from protein to protein, or 

from protein to RNA and DNA was "precluded", he 

noted that Griffith's hypothesis was a potential 

contradiction (although it was not so promoted by 

Griffith). The revised hypothesis was later formulated, 

in part, to accommodate reverse transcription (which 

both Howard Temin and David Baltimore discovered in 

1970). 

 

In 1982: Stanley B. Prusiner of the University of 

California, San Francisco, announced that his team had 

purified the hypothetical infectious protein, which did 

not appear to be present in healthy hosts, though they 

did not manage to isolate the protein until two years 

after Prusiner's announcement. The protein was named 

a prion. Following the discovery of the same protein in 

different form in uninfected individuals, the specific 

protein that the prion was composed of was named the 

prion protein (PrP). 

  

 

 

 

Source: Boghog 

 

Figure 1: Crystallographic structure of the Human Prion Protein 90-231 (based on PDB 6DU9) 
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What is a prion? 

 

 

   

 

 

The word is derived from protein and infection, hence 

prion. It is short for "proteinaceous infectious particle" 

in reference to its ability to self-propagate and transmit 

its conformation to other proteins.  It was coined in 

1982 by the American neurologist and biochemist 

Stanley B. Prusiner who discovered prions, a class of 

infectious, self-reproducing pathogens primarily or 

solely composed of protein - a scientific theory 

considered by many as a heretical idea when first 

proposed. For this invention, Prusiner received the 1997 

Nobel Prize in Physiology or Medicine. 

 

A prion is a misfolded protein which induces misfolding 

in normal variants of the same protein, leading to 

cellular death. Prions are responsible for prion diseases, 

known as transmissible spongiform encephalopathies 

(TSE), which are fatal and transmissible 

neurodegenerative diseases affecting both humans and 

animals. These proteins can misfold sporadically, due to 

genetic mutations, or by exposure to an already 

misfolded protein, leading to an abnormal three-

dimensional structure that can propagate misfolding in 

other proteins. Figure 1 is a cartoon representing the 

crystallographic structure of the human prion protein 

90-231 while the cartoon of Figure 2 depicts the prion 

protein. 

 

 

 

Source: https://medlineplus.gov/images/PX0000E0_PRESENTATION.jpeg 

 

Figure 2: Cartoon depicting the prion protein 
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Unlike other infectious agents such as viruses, bacteria, 

and fungi, prions do not contain nucleic acids (DNA or 

RNA). They are mainly twisted isoforms of the major 

prion protein (PrP) - a naturally occurring protein with 

an uncertain function. They are the hypothesized cause 

of various TSEs, including scrapie in sheep, chronic 

wasting syndrome (CWS) in deer, bovine spongiform 

encephalopathy (BSE) in cattle (mad cow disease - 

MCD), and Creutzfeldt-Jakob disease (CJD) in humans. 

 

Prions are a type of intrinsically disordered proteins that 

continuously change conformation unless bound to a 

specific partner, such as another protein. Once a prion 

binds to another in the same conformation, it stabilizes 

and can form a “fibril”, leading to abnormal protein 

aggregates called “amyloids” (Figure 3). These 

amyloids accumulate in infected tissue, causing damage 

and cell death. The structural stability of prions makes 

them resistant to denaturation by chemical or physical 

agents, complicating disposal and containment, and 

raising concerns about iatrogenic spread through 

medical instruments. 

 

 

 

 

 

 

Figure 3: Fibril model of prion propagation 

 

Source: Joannamasel  

PrPC = Cellular prion protein; PrPSc = Scrapie prion protein 
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Prion structure 

 

 

 

 

 

 

Prions consist of a misfolded form of the major prion 

protein (PrP), a protein that is a natural part of the 

bodies of humans and other animals. The PrP found in 

infectious prions has a different structure and is 

resistant to proteases, the enzymes in the body that can 

normally break down proteins. The normal form of the 

protein is called PrPC, while the infectious form is 

called PrPSc – (C refers to 'cellular' PrP, while Sc refers 

to ‘scrapie’, the prototypic prion disease, occurring in 

sheep). PrP can also be induced to fold into other more-

or-less well-defined isoforms in vitro; although their 

relationships to the form(s) that are pathogenic in vivo 

are often unclear, high-resolution structural analyses 

have begun to reveal structural features that correlate 

with prion infectivity. The term "PrPres" may refer 

either to protease-resistant forms of PrPSc.  

 

Cellular prion protein PrPC 

PrPC is a normal protein found on the membranes of 

cells, including several blood components of which 

platelets constitute the largest reservoir in humans. It 

has 209 amino acids (in humans), one disulfide bond, a 

molecular mass of 35–36 kDa, and a mainly alpha-

helical structure (see Figure 1). Several topological 

forms exist; one cell surface form anchored via 

glycolipid and two transmembrane forms. 

 

The normal protein is not sedimentable; meaning that it 

cannot be separated by centrifuging techniques. It has a 

complex function, which continues to be investigated. 

 

PrPC binds copper ions with high affinity. This property 

is supposed to play a role in PrPC’s anti-oxidatve 

properties via reversible oxidation. Moreover, studies 

have suggested that, in vivo, due to PrPC’s low 

selectivity to metallic substrates, the protein’s anti 

oxidative function is impaired when in contact with 

metals other than copper. 

 

 

PrPC is readily digested by proteinase K and can be 

liberated from the cell surface. It plays an important 

role in cell-cell adhesion and intracellular signaling in 

vivo. and may therefore be involved in cell-cell 

communication in the brain. 

 

Scrapie prion protein PrPSc 

The infectious isoform of PrP, known as PrPSc can 

convert normal PrPC proteins into the infectious 

isoform by changing their conformation or shape; this, 

in turn, alters the way the proteins interconnect. PrPSc 

always causes prion disease. Several highly infectious, 

brain-derived PrPSc structures have been discovered by 

cryo-electron microscopy. Another brain-derived fibril 

structure isolated from humans with Gerstmann-

Straussler-Scheinker syndrome (GSSS) has also been 

determined. 

 

Protease-resistant prion protein PrPres 

The term "PrPres" may refer either to protease-resistant 

forms of PrPSc, which is isolated from infectious tissue 

and associated with the TSE agent, or to other protease-

resistant forms of PrP that, for example, might be 

generated in vitro. Accordingly, unlike PrPSc, PrPres 

may not necessarily be infectious. 

 

Protease-resistant PrPSc-like protein (PrPres) is the name 

given to any isoform of PrPc which is structurally 

altered and converted into a misfolded proteinase K-

resistant form. To model conversion of PrPC to PrPSc in 

vitro, Kocisko et al. showed that PrPSc could cause PrPC 

to convert to PrPres under cell-free conditions. Further, 

Soto et al. demonstrated sustained amplification of 

PrPres and prion infectivity by a procedure involving 
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Models of prion replication and implications for 
drug design 

Genetic susceptibility 

Normal functions of the prion protein 

cyclic amplification of protein misfolding. 

 

 

 

The majority of human prion diseases are classified as 

sporadic Creutzfeldt–Jakob disease (sCJD). Genetic 

research has identified an association between 

susceptibility to sCJD and a polymorphism at codon 

129 in the PRNP gene, which encodes the prion protein 

(PrP). A homozygous methionine/methionine (MM) 

genotype at this position has been shown to 

significantly increase the risk of developing sCJD when 

compared to a heterozygous methionine/valine (MV) 

genotype. Analysis of multiple studies has shown that 

individuals with the MM genotype are approximately 

five times more likely to develop sCJD than those with 

the MV genotype. 

 

 

 

 

The physiological function of the prion protein remains 

poorly understood. While data from in vitro 

experiments suggest many dissimilar roles, studies on 

PrP knockout mice have provided only limited 

information because these animals exhibit only minor 

abnormalities. In research done in mice, it was found 

that the cleavage of PrP in peripheral nerves causes the 

activation of myelin repair in Schwann cells and that 

the lack of PrP proteins caused demyelination in those 

cells. 

 

PrP and regulated cell death 

 

MAVS, RIP1, and RIP3 are prion-like proteins found in 

other parts of the body. They also polymerize into 

filamentous amyloid fibers which initiate regulated cell 

death in the case of a viral infection to prevent the 

spread of virions to other surrounding cells. 

 

PrP and long-term memory 

In 2005, a review of evidence available suggested that 

PrP may have a normal function in the maintenance of 

long-term memory. Also, a 2004 study found that mice 

lacking genes for normal cellular PrP protein show 

altered hippocampal long-term potentiation. A recent 

study that also suggests why this might be the case, 

found that the neuronal protein CPEB has a similar 

genetic sequence to yeast prion proteins. The prion-like 

formation of CPEB is essential for maintaining long-

term synaptic changes associated with long-term 

memory formation. 

 

PrP and stem cell renewal 

A 2006 article from the Whitehead Institute for 

Biomedical Research indicates that PrP expression on 

stem cells is necessary for an organism's self-renewal of 

bone marrow. The study showed that all long-term 

hematopoietic stem cells express PrP on their cell 

membrane and that hematopoietic tissues with PrP-null 

stem cells exhibit increased sensitivity to cell depletion. 

 

PrP and innate immunity 

There is some evidence that PrP may play a role in 

innate immunity, as the expression of PRNP, the PrP 

gene, is upregulated in many viral infections and PrP 

has antiviral properties against many viruses, including 

HIV. 

 

 

 

 

There are essentially two models (hypotheses) that try 

to explain how prions replicate in a protein-like manner. 

 

Heterodimer model 

This model assumes that a single PrPSc molecule binds 

to a single PrPC molecule and catalyzes its conversion 

into PrPSc. The two PrPSc molecules then come apart 

and can go on to convert more PrPC. However, a model 

of prion replication must explain both how prions 

propagate, and why their spontaneous appearance is so 

rare. Manfred Eigen showed that the heterodimer model 

requires PrPSc to be an extraordinarily effective 
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Prion transmission 

catalyst, increasing the rate of the conversion reaction 

by a factor of around 1015. This problem does not arise 

if PrPSc exists only in aggregated forms such as 

amyloid, where cooperativity may act as a barrier to 

spontaneous conversion. What is more, despite 

considerable effort, infectious monomeric PrPSc has 

never been isolated. 

 

Fibril model 

An alternative model assumes that PrPSc exists only as 

fibrils, and that fibril ends bind PrPC and convert it into 

PrPSc. If this were all, then the quantity of prions would 

increase linearly, forming ever longer fibrils. But 

exponential growth of both PrPSc and the quantity of 

infectious particles is observed during prion disease. 

This can be explained by considering fibril breakage. A 

mathematical solution for the exponential growth rate 

resulting from the combination of fibril growth and 

fibril breakage has been found. The exponential growth 

rate depends largely on the square root of the PrPC 

concentration. The incubation period is determined by 

the exponential growth rate, and in vivo data on prion 

diseases in transgenic mice   match this prediction. The 

same square root dependence is also seen in vitro in 

experiments with a variety of different amyloid 

proteins. 

 

Implications for drug design 

The mechanism of prion replication has implications for 

designing drugs. Since the incubation period of prion 

diseases is so long, an effective drug does not need to 

eliminate all prions but simply needs to slow down the 

rate of exponential growth. Models predict that the most 

effective way to achieve this, using a drug with the 

lowest possible dose, is to find a drug that binds to fibril 

ends and blocks them from growing any further. 

 

Researchers at Dartmouth College discovered that 

endogenous host cofactor molecules such as the 

phospholipid molecule (e.g. phosphatidylethanolamine) 

and polyanions (e.g. single stranded RNA molecules) 

are necessary to form PrPSc molecules with high levels 

of specific infectivity in vitro, whereas protein-only 

PrPSc molecules appear to lack significant levels of 

biological infectivity. 

 

 

 

 

As stated in an earlier section, it has been recognized 

that prion diseases can arise in four different ways: 

 

 Acquired,  

 Familial,  

 Sporadic. and 

 Iatrophic. 

 

It is often assumed that the diseased form directly 

interacts with the normal form to make it rearrange its 

structure. One idea, the "Protein X hypothesis”, is that 

an as-yet unidentified cellular protein (Protein X) 

enables the conversion of PrPC to PrPSc by bringing a 

molecule of each of the two together into a complex. 

 

There are three (possibly four) transmission paths, 

including:   

 

 Ingestion: The primary method of infection in 

animals is through ingestion. It is thought that 

prions may be deposited in the environment 

through the remains of dead animals and via 

urine, saliva, and other body fluids. They may 

then linger in the soil by binding to clay and 

other minerals. A University of California 

research team has provided evidence for the 

theory that infection can occur from prions in 

manure. And, since manure is present in many 

areas surrounding water reservoirs, as well as 

used on many crop fields, it raises the 

possibility of widespread transmission.  

 

 Environment: In 2015, researchers at The 

University of Texas, Health Science Center in 

Houston found that plants can be a vector for 
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Prion degradation 

Treatments 

prions. When researchers fed hamsters grass 

that grew on ground where a deer that died 

with chronic wasting disease (CWD) was 

buried, the hamsters became ill with CWD. 

This result suggests that prions can bind to 

plants, which then take them up into the leaf 

and stem structure, where they can be eaten by 

herbivores, thus completing the cycle. It is thus 

possible that there is a progressively 

accumulating number of prions in the 

environment.  

 

 Airborne transmission: Although it was 

initially reported in January 2011 that 

researchers had discovered prions spreading 

through airborne transmission on aerosol 

particles in an animal testing experiment 

focusing on scrapie infection in laboratory 

mice, this report was retracted in 2024.   

 

 Laboratory transmission: Preliminary 

evidence supporting the notion that prions can 

be transmitted through use of urine-derived 

human menopausal gonadotropin administered 

for the treatment of infertility was published in 

2011. 

 

 

 

 

Prions can degrade through two processes:  

 

Degradation resistance in nature 

Overwhelming evidence shows that prions resist 

degradation and persist in the environment for years. 

Also, proteases do not degrade them. Experimental 

evidence shows that unbound prions degrade over time, 

while soil-bound prions remain at stable or increasing 

levels, suggesting that prions likely accumulate in the 

environment. One 2015 study by US scientists found 

that repeated drying and wetting may render soil-bound 

prions less infectious, although this was dependent on 

the soil type to which they were bound.  

 

Degradation by living beings 

More recent studies suggest that scrapie prions can be 

degraded by diverse cellular machinery of the affected 

animal cell. In an infected cell, extracellular lysosomal 

PrPSc does not tend to accumulate and is rapidly 

cleared by the lysosome via the endosome. The 

intracellular portion is harder to clear and tends to build 

up. The ubiquitin proteosome system (UPS) appears to 

be able to degrade small enough aggregates. 

 

Autophagy promotion and inhibition 

Autophagy plays a bigger role by accepting PrPSc from 

the ER lumen and degrading it. Altogether, these 

mechanisms allow the cell to delay its death from being 

overwhelmed by misfolded proteins. Inhibition of 

autophagy accelerates prion accumulation whereas 

encouragement of autophagy promotes prion clearance. 

Some autophagy-promoting compounds have shown 

promise in animal models by delaying disease onset and 

death. 

 

 

 

There are no effective treatments for prion diseases. 

Clinical trials in humans have not met with success and 

have been hampered by the rarity of prion diseases. 

Although some potential treatments have shown 

promise in the laboratory, none have been effective 

once the disease has commenced. 

 

Case of other diseases 

Prion-like domains have been found in a variety of 

other mammalian proteins. Some of these proteins have 

been implicated in the ontogeny of age-related 

neurodegenerative disorders such as amyotrophic lateral 

sclerosis (ALS), frontotemporal degeneration with 

ubiquitin-positive inclusions (FTLD-U). Alzheimer’s 

disease (AD), Parkinson’s disease (PD) and 

Huntington’s disease (HD). They are also implicated in 

some forms of systemic amyloidosis including AA 
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Links to and roles in other neurodegenerative 
diseases 

Conclusions and take-aways 

amyloidosis that develops in humans and animals with 

inflammatory and infectious diseases such as 

tuberculosis, Crohn’s disease (CD), rheumatoid arthritis 

(RA), and HIV/AIDS. AA amyloidosis, like prion 

disease, may be transmissible. This has given rise to the 

'prion paradigm', where otherwise harmless proteins can 

be converted to a pathogenic form by a small number of 

misfolded, nucleating proteins. 

Bioinformatic screens have predicted that over 250 

human proteins contain prion-like domains (PrLD). 

These domains are hypothesized to have the same 

transmissible amyloidogenic properties of PrP and 

known fungal proteins. As in yeast, proteins involved in 

gene expression and RNA binding seem to be 

particularly enriched in PrLD's, compared to other 

classes of protein. In particular, 29 of the known 210 

proteins with an RNA recognition motif also have a 

putative prion domain. Meanwhile, several of these 

RNA-binding proteins have been independently 

identified as pathogenic in cases of ALS, FTLD-U, AD, 

and HD.    

 

 

 

 

All known prion diseases in mammals affect the 

structure of the brain or other neural tissues. These 

diseases are progressive, have no known effective 

treatment, and are invariably fatal. The pathogenicity of 

prions and proteins with prion-like domains is 

hypothesized to arise from their self-templating ability 

and the resulting exponential growth of amyloid fibrils. 

The presence of amyloid fibrils in patients with 

degenerative diseases has been well documented. These 

amyloid fibrils are seen as the result of pathogenic 

proteins that self-propagate and form highly stable, non-

functional aggregates. While this does not necessarily 

imply a causal relationship between amyloid and 

degenerative diseases, the toxicity of certain amyloid 

forms and the overproduction of amyloid in familial 

cases of degenerative disorders supports the idea that 

amyloid formation is generally toxic. 

 

Specifically, aggregation of TAR (transactive response)-

DNA binding protein-43 (TDP-43), an RNA-binding 

protein, has been found in ALS/MND patients, and 

mutations in the genes coding for these proteins have 

been identified in familial cases of motor neuron 

diseases such as ALS (ALS/MND). These mutations 

promote the misfolding of the proteins into a prion-like 

conformation. The misfolded form of TDP-43 forms 

cytoplasmic inclusions in affected neurons and is found 

depleted in the nucleus. In addition to ALS/MND and 

FTLD-U, TDP-43 pathology is a feature of many cases 

of AD, PD, and HD. The misfolding of TDP-43 is 

largely directed by its prion-like domain. This domain is 

inherently prone to misfolding, while pathological 

mutations in TDP-43 have been found to increase this 

propensity to misfold, explaining the presence of these 

mutations in familial cases of ALS/MND. The prion-

like domain of TDP-43 has been shown to be both 

necessary and sufficient for protein misfolding and 

aggregation. 

 

Similarly, pathogenic mutations have been identified in 

the prion-like domains of heterogeneous nuclear 

riboproteins hnRNPA2B1 and hnRNPA1 in familial 

cases of muscle, brain, bone and motor neuron 

degeneration. The wild-type form of all of these 

proteins shows a tendency to self-assemble into 

amyloid fibrils, while the pathogenic mutations 

exacerbate this behavior and lead to excess 

accumulation.  

 

 

 

 

 A prion is a misfolded protein which induces 

misfolding in normal variants of the same 

protein, leading to cellular death. Prions are 

responsible for prion diseases known as 

transmissible spongiform encephalopathies, 

which are fatal and transmissible 

neurodegenerative diseases affecting both 
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humans and animals.  

 

 Prion proteins can misfold sporadically, due to 

genetic mutations, or by exposure to an already 

misfolded protein, leading to an abnormal 

three-dimensional structure that can propagate 

misfolding in other proteins. They are mainly 

twisted isoforms of the major prion protein 

(PrP) - a naturally occurring protein with an 

uncertain function. 

 

 Unlike other infectious agents such as viruses, 

bacteria, and fungi, prions do not contain 

nucleic acids (DNA or RNA).  

 

 Prions are linked to other neurodegenerative 

diseases like Alzheimer’s disease, Parkinson’

s disease, and amyotrophic lateral sclerosis, 

which are sometimes referred to as prion-like 

diseases. 

 

 Prions consist of a misfolded form of the major 

prion protein, a protein that is a natural part of 

the bodies of humans and other animals. 

Infectious prions have a different structure and 

are resistant to proteases.  

 

 The physiological function of the prion protein 

remains poorly understood. While data from in 

vitro experiments suggest many dissimilar 

roles, mice studies have provided only limited 

information. 

 

 The first hypothesis that tried to explain how 

prions replicate in a protein-only manner was 

the heterodimer model. A model of prion 

replication must explain both how prions 

propagate, and why their spontaneous 

appearance is so rare.  

 

 The mechanism of prion replication has 

implications for designing drugs. Since the 

incubation period of prion diseases is so long, 

an effective drug does not need to eliminate all 

prions but simply needs to slow down the rate 

of exponential growth. Models predict that the 

most effective way to achieve this, using a 

drug with the lowest possible dose, is to find a 

drug that binds to fibril ends and blocks them 

from growing any further.  

 

 Prions cause neurodegenerative diseases by 

aggregating extracellularly within the central 

nervous system to form plaques known as 

amyloids, which disrupt the normal tissue 

structure. This disruption is characterized by 

"holes" in the tissue with resultant spongy 

architecture due to the vacuole formation in the 

neurons. Other histological changes include 

astrogliosis and the absence of an 

inflammatory reaction.  

 

 While the incubation period for prion diseases 

is relatively long (5 to 20 years), once 

symptoms appear the disease progresses 

rapidly, leading to brain damage and death.  

 

 Neurodegenerative symptoms can include 

convulsions, dementia, ataxia (balance and 

coordination dysfunction), and behavioral or 

personality changes.  

 

 All known prion diseases are untreatable and 

fatal.  

 

 There are no effective treatments for prion 

diseases. Clinical trials in humans have not 

met with success and have been hampered by 

the rarity of prion diseases. Although some 

potential treatments have shown promise in the 

laboratory, none have been effective once the 

disease has commenced. 

 

 The Sidebar revisits the central dogma of 
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Sidebar – The central dogma of molecular biology 
revisited 

molecular biology 

 

 

 

 

The central dogma of molecular biology describes the 

flow of genetic information within a biological system 

(a cell), primarily from DNA to RNA to protein. It is 

often stated as "DNA makes RNA, and RNA makes 

protein", although this is not its original meaning. 

Information here means the precise determination of 

sequence, either of bases in the nucleic acid or of amino 

acid residues in the protein. 

 

The central dogma was first stated by Francis Crick in 

1957, then published in 1958 and re-stated in a Nature 

paper published in 1970: This one-way flow ensures the 

accurate synthesis of proteins, which are essential for 

cellular function. The dogma also states that once 

"information" has passed into protein; it cannot get out 

again. In more detail, the transfer of information from 

nucleic acid to nucleic acid, or from nucleic acid to 

protein may be possible, but transfer from protein to 

protein, or from protein to nucleic acid is impossible 

(see Figure 4).

  

 

 

Source: Dhorspool 

 

"The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It 

states that such information cannot be transferred back from protein to either protein or nucleic acid." 

 

Figure 4 - An overview of the (basic) central dogma of molecular biochemistry with all enzymes labeled 

 

 

 

The transfers of information from one molecule to 

another are faithful, deterministic transfers wherein one 

biopolymer's sequence is used as a template for the 

construction of another biopolymer with a sequence that 

is entirely dependent on the original biopolymer's 

sequence. When DNA is transcribed to RNA, its 
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complement is paired to it. DNA codes are transferred 

to RNA codes in a complementary fashion. The 

encoding of proteins is done in groups of three, known 

as codons. The standard codon table applies for humans 

and mammals, but some other lifeforms (including 

human mitochondria) use different translations.   

 

Reverse transcription is the transfer of information 

from RNA to DNA (the reverse of normal 

transcription). It is the process by which genetic 

information from RNA gets transcribed into new DNA. 

 

A second version of the central dogma is popular but 

incorrect. This is the simplistic DNA → RNA → 

protein pathway published by James Watson in the first 

edition of The Molecular Biology of the Gene (1965). 

Watson's version differs from Crick's because Watson 

describes a two-step (DNA → RNA and RNA → 

protein) process as the central dogma (Figure 5). While 

the dogma as originally stated by Crick remains valid 

today, Watson's version does not. 

  

 

 

 

 

 

Source: Dhorspool 

 

 

Figure 5 - Unusual flows of information highlighted in green 

 

 

Activities unrelated to the central dogma 

 

As just stated, the central dogma of molecular biology 

states that, once sequential information has passed from 

nucleic acid to protein, it cannot flow back from protein 

to nucleic acid. However, the following activities may 

conflict with the central dogma: 

 

 Post-translational modification: After 

protein amino acid sequences have been 

translated from nucleic acid chains, they can 

be edited by appropriate enzymes. This is a 
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